
A D*-Lite Variant Incorporating Risk Awareness for
Dynamic Pursuit–Evasion Scenario on Grid Graphs

Muhammad Akmal – 13524099
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha No. 10 Bandung

muhammad.akmal.3806@gmail.com, 13524099@std.stei.itb.ac.id

Abstract—In a pursuit–evasion scenario, path planning has
always been the main challenge for both the evader and the
pursuer. By modelling the environment in a grid-based graph, the
problem can be simplified into find the shortest path dynamically
for both agents to achieve their goals. Various algorithms have
been combined to simulate how the agents move and interact,
each with its own heuristic and trade-off. This paper proposes
a novel point of view in designing a dynamic path planning
algorithm for the evader, incorporating risk awareness to avoid
nearby chasers while also maintaining the shortest path to the
goal. Implemented on a 64×64 grid and evaluated across nine
penalty scales and eleven avoidance radii, this method increases
the evader’s success rate from approximately 25 percent (with
vanilla D* Lite) to over 75 percent when the avoidance radius
is at least three cells, with peak performance reaching 100
percent success at a radius of eight cells. These gains incur
a modest path-cost increase of up to 45 percent and planning
times around 500 milliseconds per step in Python. This variant
retains all the efficiency advantages of D* Lite while substantially
improving survivability in adversarial environments. On the
broader field, the author hope these findings could be utilized in
various scenarios, including UAV, robotics, game AI, and other
applications for the greater good.

Index Terms—D* Lite, dynamic path planning, incremental
search, real-time replanning, risk awareness.

I. INTRODUCTION

Dynamic path planning involves finding optimal or safe
routes when the environment or objectives change over time.
In robotics and navigation, algorithms like A* and its in-
cremental variants: LPA* and D*-Lite, are widely used for
real-time replanning. The A* algorithm is a standard heuristic
search that finds shortest paths using admissible heuristics (e.g.
Manhattan or Chebyshev distance for grid graph). However,
A* assumes a static environment and must re-plan from scratch
if the world changes [1]. Lifelong Planning A* (LPA*) is an
incremental form of A* that reuses previous search effort when
edge costs change [2]. D* Lite, introduced by Koenig and
Likhachev [3], builds on LPA* to enable efficient replanning in
unknown or changing terrain. Koenig and Likhachev note that
“incremental heuristic search methods use heuristics to focus
their search and reuse information from previous searches to
find solutions ... faster than solving each task from scratch” [2].
D* Lite “implements the same behavior as Stentz’ Focussed
Dynamic A*” but with a simpler implementation [3]. These
algorithms have proven effective in robotic navigation and
have applications in military strategy: for instance, missile

guidance systems use similar replanning methods to evade
interceptors in dynamic engagement scenarios.

In adversarial pursuit–evasion scenario, an evader (target)
must reach a goal while avoiding a pursuer (chaser). In-
corporating risk awareness into the evader’s planning can
significantly improve survivability: the evader should prefer
paths that both reach the goal and maintain distance from the
pursuer. Risk aware planning has been studied in contexts like
UAV navigation, where “dynamic path planning for UAVs ...
takes into account static and dynamic threats” using risk maps
[4]. Generally, risk-aware planners minimize both travel cost
and exposure to danger (e.g. threats, obstacles, or adversaries).

This paper proposes a variant of the D*-Lite Algorithm that
incorporates risk awareness for the evader in a pursuit–evasion
scenario. The evader’s motion is planned on a discrete grid
using an incremental D*-Lite search that dynamically incor-
porates a risk penalty based on proximity to the chaser. The
author chose to focus on the evader: it must reach its goal
while maximizing separation from the chaser. The contribu-
tions include (a) a formal model of grid-based pursuit–evasion,
(b) a D*-Lite variant that adds a distance-based risk cost to
the evader’s search, and (c) an empirical evaluation (in Python)
measuring path cost, planning runtime, and success rate.

II. THEORETICAL BASIS

A. Graph Theory and Terminology

A graph G = (V,E) is formally defined by a vertex set V
and an edge set E ⊆ [V]2 where each edge is a 2-element
subset of V [5]. Here, [V]2 denotes all unordered pairs of
vertices. Graphs can be undirected (edges have no orientation)
or directed (each edge is an ordered pair of vertices). For
example, in an undirected graph, an edge {u, v} connects u
and v symmetrically, whereas in a directed graph, an edge is
written (u, v) meaning “from u to v” [5]. Graphs may also
be weighted, meaning each edge (u, v) carries a numerical
cost w(u, v). Graphs that may have multiple edges connecting
the same vertices are called multigraphs, [6]. When there
are m different edges associated to the same unordered pair
of vertices {u, v}, we also say that {u, v} is an edge of
multiplicity m. That is, we can think of this set of edges as
m different copies of an edge {u, v}.

Several graph terminologies heavily used in this paper
includes adjacency, incidency, and degree. Two vertices u and

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

mailto:muhammad.akmal.3806@gmail.com
mailto:13524099.stei.itb.ac.id

v in an undirected graph G are called adjacent (or neighbors)
in G if u and v are endpoints of an edge e of G. Such an edge
e is called incident with the vertices u and v and e is said to
connect u and v [6]. The set of all neighbors of a vertex v of
G = (V,E), denoted by N(v), is called the neighborhood of
v. If A is a subset of V , we denote by N(A) the set of all
vertices in G that are adjacent to at least one vertex in A [6].
So,

N(A) =
⋃
v∈A

N(v).

The degree of a vertex in an undirected graph is the number of
edges incident with it, except that a loop at a vertex contributes
twice to the degree of that vertex [6]. The degree of the vertex
v is denoted by deg(v).

Fig. 1. A simple undirected graph with 7 vertices and 9 edges. (Source: [6])

Let’s look at Fig. 1 to illustrate the definitons. The
neighborhoods of vertices are N(a) = {b, f}, N(b) =
{a, c, e, f},N(c) = {b, d, e, f}, N(d) = {c}, N(f) =
{a, b, c, e}, and N(g) = ∅. Since a ∈ N(b) and b ∈ N(a),
then meaning a and b are adjacent. The degree of vertices are
deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1,
deg(e) = 3, and deg(g) = 0. Therefore, it can be concluded
that for a simple undirected graph, deg(v) = |N(v)|.

B. Graph Representation

In algorithms, we represent G = (V,E) via either adja-
cency lists or an adjacency matrix [7]. In the adjacency-
list representation, we have an array (or map) Adj of length
|V |, where Adj[u] is a list of all vertices v such that
(u, v) ∈ E (for directed graphs) or {u, v} ∈ E (undirected)
[7]. Thus, Adj[u] stores pointers or references to u’s neigh-
bors. Fig. 1 could be represented by lists with mapping
the letter label to number (e.g. a = 1), Adj[1]={2,6},
Adj[2]={1,3,5,6}, etc. In the adjacency-matrix represen-
tation, we index vertices from 1 to |V | and use a |V | × |V |
matrix A = (aij) with

aij =

{
1 if (i, j) ∈ E,

0 otherwise.

For undirected graphs, A is symmetric. In a weighted graph,
we store the weight w(i, j) instead of 1 (or in place of 0/1).
Adjacency lists are space-efficient for sparse graphs (O(V +
E) memory), while an adjacency matrix uses O(V 2) space
[7]. Both representations readily extend to weighted graphs
by storing each edge’s weight in the list or matrix entry.

Fig. 2. Standard graph representations for a simple graph. Adjacency-list
form (left); adjacency-matrix form (right). (Source: [7])

C. Grid Connectivity and Chebyshev Distance

In grid-based path planning, we often use an 8-connected
grid graph where each cell is connected (adjacent) to its 8
neighbors (including diagonal). The cost (weight) of moving
between two adjacent cells (x, y) and (x′, y′) is given by the
Chebyshev distance:

dcheb((x, y), (x
′, y′)) = max

(
|x− x′|, |y − y′|

)
. (1)

Thus a diagonal move |x − x′| = |y − y′| = 1 has cost
1 (same as a horizontal or vertical move). This corresponds
to the minimum number of king’s moves on a chessboard.
In effect, an 8-connected grid with unit Chebyshev weights
makes all immediate moves cost 1.

D. Path Planning Algorithm

To compute shortest paths in a graph, classic algorithms
follow a similar pattern of exploring nodes and relaxing edge
costs. Below, the author outline three key methods: Breadth-
First Search (for unweighted paths), Dijkstra’s algorithm (for
weighted graphs), and A* search (for weighted graphs with
heuristics). This part describe their general steps, pseudocode,
and relevant properties, citing standard algorithm texts.

1) Breadth First Search: BFS finds shortest paths (in edge-
count) from a node source s in an unweighted graph. It uses a
FIFO (first in, first out) queue to explore vertices in order of
increasing distance. Initially, all vertices are marked “white”
(undiscovered) and assigned distance d[v] =∞; the source s is
colored “gray”, d[s] = 0, and enqueued. Then BFS repeatedly
dequeues a vertex u, and for each neighbor v ∈ Adj[u] that is
still white, it “discovers” v by coloring it gray, setting d[v] =
d[u]+1, recording u as v’s predecessor, and enqueuing v. Once
all neighbors are processed, u is colored “black” to mark it
finished. This level-by-level exploration guarantees d[v] is the
minimum number of edges from s to v. In fact, BFS runs in
O(|V | + |E|) time by scanning each adjacency list once [8],
as can be seen in Algorithm 1.

2) Djikstra’s Algorithm: For graphs with non-negative edge
weights, Dijkstra’s algorithm finds the shortest-path distances
from a source s. It maintains a set S of vertices whose final
distances are known, and a min-priority queue Q (typically a
binary heap) of the remaining vertices keyed by their current
distance estimate d[u]. Initially all d[v] =∞ except d[s] = 0.
Then in each iteration, the algorithm extracts the vertex u
with minimum d[u] from Q, adds u to S, and “relaxes” each
edge (u, v) out of u: if d[u] + w(u, v) < d[v], it updates

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Algorithm 1 Breadth-First Search (BFS)
Require: Graph G = (V,E), starting vertex s ∈ V
Ensure: Distances d[v] and parents parent[v] for all v ∈ V

1: for all u ∈ V do
2: color[u]←WHITE
3: d[u]←∞
4: parent[u]← NIL
5: end for
6: color[s]← GRAY
7: d[s]← 0
8: parent[s]← NIL
9: Q← empty queue

10: ENQUEUE(Q, s)
11: while Q ̸= ∅ do
12: u← DEQUEUE(Q)
13: for all v ∈ Adj[u] do
14: if color[v] = WHITE then
15: color[v]← GRAY
16: d[v]← d[u] + 1
17: parent[v]← u
18: ENQUEUE(Q, v)
19: end if
20: end for
21: color[u]← BLACK
22: end while

d[v] = d[u] + w(u, v) and sets u as v’s predecessor. Cormen,
Leiseron, Rivest, and Stein [7] describe this as “repeatedly
select the vertex u ∈ V − S with minimum shortest-path
estimate, add u to S, and relax all edges leaving u”. When the
queue is empty, Dijkstra’s algorithm has d[v] = δ(s, v) (the
true shortest distance) for every v, provided all weights are
non-negative. With a binary-heap implementation, the time is
O((|V | + |E|) log |V |). See Algorithm 2 for implementation
of the algorithm using priority queue.

3) A* Search: A* (pronounced as A-star) is a best-first
search algorithm that uses a heuristic to guide the search
towards a goal node t. It generalizes Uniform-Cost Search
by using a priority function

f(n) = g(n) + h(n) (2)

instead of just g(n), where g(n) is the cost from the start
to n and h(n) is an estimate of the cost from n to the goal
[8]. In graph-search form, A* maintains an open set (priority
queue) of frontier nodes ordered by f ; each iteration pops the
node n with smallest f(n). If n is the goal, the shortest path
has been found. Otherwise, n is expanded and its neighbors
are “relaxed” in the same way as Dijkstra’s algorithm, except
using f -values. When a neighbor m is discovered or improved,
we set g(m), compute f(m) = g(m) + h(m), and insert (or
update) m in the open set. If the heuristic h is admissible
(never overestimates the true cost to the goal), A* is guaran-
teed to find an optimal path. As noted by Russell and Norvig,
the A* pseudocode (shown in Algorithm 3) is identical to

Algorithm 2 Dijkstra’s Algorithm
Require: Graph G = (V,E) with non-negative edge weights

w(u, v), source vertex s ∈ V
Ensure: Shortest path distances d[v] and parent pointers

parent[v] for all v ∈ V
1: for all u ∈ V do
2: d[u]←∞
3: parent[u]← NIL
4: end for
5: d[s]← 0
6: Q← priority queue containing all u ∈ V with key d[u]
7: while Q ̸= ∅ do
8: u← EXTRACT-MIN(Q)
9: for all v ∈ Adj[u] do

10: if d[u] + w(u, v) < d[v] then
11: d[v]← d[u] + w(u, v)
12: parent[v]← u
13: DECREASE-KEY(Q, v, d[v])
14: end if
15: end for
16: end while

Uniform-Cost Search except for the priority computation: use
f(n) = g(n) + h(n) instead of g(n) [8].

E. Incremental Search Algorithm

1) LPA* Algorithm: Lifelong Planning A* (LPA*) extends
A* to dynamic graphs [1], [2]. It maintains for each vertex v
a pair of values (g(v), rhs(v)), where g is the current best-
known distance from the start, and rhs is a one-step lookahead
cost (like a local target). The rhs-values are computed by
(3), where s ∈ S representing the finite set of vertices of the
graph, and pred(s) means the predecessor of vertex s [2];
while c(s′, s) is the cost (weight) to get from s′ to s.

rhs(s) =

{
0 if s = sstart,

mins′∈pred(s)(g(s
′) + c(s′, s)) otherwise.

(3)
Initially, LPA* runs a standard A* to compute a path. When

an edge cost changes (due to an obstacle added or removed),
only affected vertices have their and updated, and the search
re-expands necessary nodes. The key idea is that LPA* “reuses
those parts of the previous search tree that are identical to the
new one” [1], [2], so replanning is faster than planning from
scratch if changes are small or near the goal. LPA* repeatedly
finds shortest paths from the start to the goal while edge costs
change or vertices are added or deleted.

2) D* Algorithm: D* (Dynamic A*) is a similar incremen-
tal planner originally designed for mobile robots in unknown
or changing terrain [9]. D* computes an initial optimal path
from the start to goal, then when new information (e.g. an
obstacle) is discovered, it efficiently repairs the existing path
instead of replanning entirely. Stentz showed that “D* is far
more efficient than the brute-force path planner” and guaran-
tees an optimal traverse as costs change [9]. D* repeatedly

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Algorithm 3 A* Search Algorithm
Require: Graph G = (V,E), start vertex start, goal vertex

goal, heuristic function h : V → R
Ensure: Path from start to goal minimizing g(n) + h(n)

1: for all u ∈ V do
2: g[u]←∞
3: parent[u]← NIL
4: end for
5: g[start]← 0
6: f [start]← h(start)
7: open set ← priority queue containing start, keyed by

f []
8: while open set ̸= ∅ do
9: n← EXTRACT-MIN(open set) ▷ node with lowest

f
10: if n = goal then
11: return construct path from start to goal via

parent[]
12: end if
13: for all m ∈ Adj[n] do
14: cost← g[n] + w(n,m)
15: if cost < g[m] then
16: g[m]← cost
17: parent[m]← n
18: f [m]← g[m] + h(m)
19: if m /∈ open set then
20: INSERT(open set,m, key = f [m])
21: end if
22: end if
23: end for
24: end while

propagates cost changes from the changed edge back through
the open list of vertices, effectively performing a focused
incremental update near the change. This makes D* well-
suited to robotic navigation where new obstacles are sensed
during execution.

3) D* Lite Algorithm: D* Lite simplifies D* by leveraging
LPA*. Koenig and Likhachev proved that D* Lite “implements
the same behavior as Stentz’ Focused Dynamic A* but is
algorithmically different” [3]. In practice, D* Lite runs LPA*
on a graph where the roles of start and goal are exchanged.
This method allows replanning from the current robot position
back to the (fixed) goal, as can be seen in Algorithm 4. When
an edge cost changes, only local consistency is checked. As
the authors note, when the start moves, the heuristic values
decrease by a constant offset and all keys can be updated by
that offset, avoiding a full priority-queue rebuild. The result
is an algorithm that can replan very quickly when unexpected
obstacles appear, making it effective in cluttered and dynamic
environments. The main algorithm can be seen in Algorithm
5.

Algorithm 4 Compute Shortest-Path Procedure for D* Lite
1: procedure CALCULATEKEY(s)
2: return [min(g(s), rhs(s)) + h(sstart, s) +

km; min(g(s), rhs(s))]
3: end procedure
4: procedure UPDATEVERTEX(u)
5: if u ̸= sgoal then
6: rhs(u)← mins′∈Succ(u)(c(u, s

′) + g(s′))
7: end if
8: if u ∈ U then
9: U.Remove(u)

10: end if
11: if g(u) ̸= rhs(u) then
12: U.Insert(u,CalculateKey(u))
13: end if
14: end procedure
15: procedure COMPUTESHORTESTPATH
16: while U.TopKey() < CalculateKey(sstart) or

rhs(sstart) ̸= g(sstart) do
17: kold ← U.TopKey()
18: u← U.Pop()
19: if kold < CalculateKey(u) then
20: U.Insert(u,CalculateKey(u))
21: else if g(u) > rhs(u) then
22: g(u)← rhs(u)
23: for all s ∈ Pred(u) do
24: UPDATEVERTEX(s)
25: end for
26: else
27: g(u)←∞
28: for all s ∈ Pred(u) ∪ {u} do
29: UPDATEVERTEX(s)
30: end for
31: end if
32: end while
33: end procedure

III. DESIGN OF ALGORITHM

A. Environment Model

The environment the agents live is defined as a 2D grid of
cells, represented by a matrix

A = (aij)0≤i<m, 0≤j<n,

Then, two cells p = ai1j1 and p = ai2j2 can be defined to be
adjacent if and only if

max(|i1 − i2|, |j1 − j2|) = 1.

Then, the author model the environment as a grid-based
graph, defined as a pair G = (V,E) of sets satisfying E ⊆
[V]2 where each vertex corresponds to a cell in the 2D grid
and edges e = (u, v) ∈ E connect adjacent cells, meaning
an eight-connected neighborhood. In an obstacle-free “open”
field, all edges are present except those going off the grid.
A base weight w(u, v) is assigned to each edge, representing

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Algorithm 5 Main Procedure of D* Lite Algorithm
1: procedure INITIALIZE
2: U ← ∅
3: km ← 0
4: for all s ∈ S do
5: rhs(s)← g(s)←∞
6: end for
7: rhs(sgoal)← 0
8: U.Insert(sgoal,CalculateKey(sgoal))
9: end procedure

10: procedure MAIN
11: slast ← sstart
12: INITIALIZE
13: COMPUTESHORTESTPATH
14: while sstart ̸= sgoal do ▷ If g(sstart) =∞, no

known path
15: sstart ← argmins′∈Succ(sstart)(c(sstart, s

′) +
g(s′))

16: Move to sstart
17: Scan for changed edge costs
18: if any edge cost changed then
19: km ← km + h(slast, sstart)
20: slast ← sstart
21: for all directed edges (u, v) with changed edge

costs do
22: Update edge cost c(u, v)
23: UPDATEVERTEX(u)
24: UPDATEVERTEX(v)
25: end for
26: COMPUTESHORTESTPATH
27: end if
28: end while
29: end procedure

the travel cost. With equal-cost movement, one can set for
w(u, v) = 1 orthogonal neighbors, which corresponds to the
Chebyshev distance metric as seen in (1).

To simulate the dynamic condition of the map, the grid
weight can be increased around an area for indicating a
“ground elevation”. This condition will realistically simu-
late real-world scenario with uneven terrain in ground path-
planning. For the wall, fully increasing the weight up to
infinity instead of deleting the edges connecting both cell. This
model could be represented compactly by assigning a value
Cv to each cell (vertex) v then compute the difference instead
of storing it in the edge. With the model in mind, it can be
generalized that is for every adjacent two vertices u, v ∈ V ,
the weight of edge e = (u, v) is

w(u, v) = |Cu − Cv|. (4)

The author will use Python’s library Pygame to display
the environment as a 2D Gridmap with grayscale gradient
indicating the value assigned to the cells, where the darker
cell correspond to greater value or “higher elevation”. White
and black cells correspond to normal cell with weight 1 and a

Fig. 3. Initially generated 64× 64 grid map with grayscale marks.

wall with infinite cost, repectively. The map is initialized with
the 64×64 grid cells and each cell filled with random number
to simulate the initial condition of the map. The result of the
generated map can be seen in Fig. 3. The full simulation can
be acessed in Appendix.

B. Evader’s Initial Algorithm

The author will implement the vanilla D* Lite algorithm
as the evader’s initial path planning algorithm. The main
advantage of D* Lite is that it can efficiently replan in dynamic
environments by incrementally updating the shortest path as
the agent progresses and the map changes.

D* Lite is initialized with the goal as the anchor point
and uses the Chebyshev distance as the consistent heuristic
function, defined as

h(u, v) = max (|iu − iv|, |ju − jv|) , (5)

where (iu, ju) and (iv, jv) denote the coordinates of nodes u
and v respectively.

At each time step t, the algorithm does the following:
1) Updates edge weights if the environment has changed.
2) Performs consistency check on affected nodes.
3) Replans the shortest path from the current position to

the goal.
4) Moves one step along the path.
This algorithm only takes into account environmental cost

changes but assumes no knowledge of a dynamic pursuer.
Thus, it is susceptible to being intercepted by the pursuer,
particularly in open environments without obstacles.

C. Evader’s Variant Algorithm: Risk-Aware D* Lite

To enhance the survivability of the evader, this paper
introduce a variant of D* Lite that incorporates a dynamic
risk penalty into the path cost function. The key idea is to
bias the evader’s path away from the pursuer, based on their
real-time location, while still maintaining an efficient route to
the goal.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

1) Risk Penalty Function: Let pt denote the current position
of the pursuer at time t. Define a time-varying risk penalty
function ρt(v) for any cell v ∈ V as:

ρt(v) = λ · dcheb(et, g) ·max {0, r − dcheb(v, pt)} , (6)

where dcheb is the Chebyshev distance between cell v and the
pursuer pt as defined in (1), r is the risk radius threshold, and λ
is a penalty scaling factor. The dcheb(et, g) is used to decrease
the risk when the evader et is near the goal g, encouraging the
evader to get to ignoring the pursuer when its almost reached
the goal.

This function adds a repulsive cost around the pursuer,
with higher penalties for cells closer than r to the pursuer.
This transforms the map into a risk-augmented terrain that
discourages paths passing near the chaser.

2) Weight Update Rule: Modify the edge weight computa-
tion to include the risk penalty as follows:

w′
t(u, v) = |Cu − Cv|+ ρt(v), (7)

where |Cu−Cv| accounts for the terrain elevation difference,
and ρt(v) penalizes proximity to the pursuer.

3) Algorithmic Procedure: At each time step t, the evader
executes the following Risk-Aware D* Lite procedure:

1) Observe the current position of the pursuer pt.
2) For all v ∈ V such that dcheb(v, pt) ≤ r, compute ρt(v)

using (6).
3) Update edge weights to use w′

t(u, v) as in (7).
4) Mark affected nodes as inconsistent and enqueue them

for priority queue update.
5) Execute the ComputeShortestPath function of D*

Lite to replan.
6) Move one step along the computed path.

The pseudocode implementation of this routine is provided
in Algorithm 6.

Algorithm 6 Risk-Aware D* Lite Path Planning
Require: Initial state s, goal state g, risk threshold r, penalty

factor λ
1: INITIALIZE ▷ Initialize D* Lite with s, g, base costs

w(u, v)
2: while s ̸= g and s ̸= pt do
3: Observe pursuer position pt
4: for all v ∈ V such that dcheb(v, pt) ≤ r do
5: for all neighbors u of v do
6: Update w′

t(u, v)← |Cu−Cv|+λ ·max(0, r−
dcheb(v, pt))

7: end for
8: end for
9: COMPUTESHORTESTPATH

10: Move s to the next step on the new path
11: end while

Remarks: This variant encourages the evader to avoid cap-
ture zones dynamically, producing more intelligent paths that
consider both elevation and threat. It remains computationally
efficient due to D* Lite’s incremental nature, even as risk
values change frequently.

D. Pursuer’s Algorithm

The pursuer’s will use A* Algorithm as shown in Algorithm
3 with a modification on choosing the target cell. For simplic-
ity, it is assumed that the agent know the position of both
the evader and its goal. When the target is afar (the distance
is large enough), the algorithm will try to “intercept” the
evader by setting a ”middle point” between the evader’s current
position and the goal cell position and try to move there as fast
as possible. Otherwise, the Chebyshev Distance between the
evader and pursuer is close enough (i.e. dcheb(pt, et) < R
for some radius R) , so the pursuer will use the original
A* algorithm to “chase” the evader. We will use the value
R = r + 1 for the evader’s algorithm by reusing r previously
defined in section III-C1. This decision is made to simplify
the model and surpress the number of variables used.

More formally, the target cell for the pursuer’s algorithm
at a discrete time state t when the current distance between
pursuer pt and evader et is dcheb(pt, et) ≥ r, is d = a[i][j],
where:

(i, j) =

(⌊
ievader(t) + igoal

2

⌋
,

⌊
jevader(t) + jgoal

2

⌋)
(8)

The behaviour of the agent is that for every discrete time
step t, it will update the evader’s posititon, then immediately
recompute the shortest path and then move one step at a time.
Sure, this behaviour is computationally expensive and not
resembling a good incremental search algorithm. But it will
be a good algorithm to oppose the original D* Lite Algorithm
without the awareness of pursuer’s positition. This way, the
evader cannot just “blindly” move to the goal, since it will
likely that the pursuer may meet it on the way.

E. Game State

A game state is determined to be as follows. For every
discrete time step t, the game will check if one of these
conditions satisfied, in order:

1) Lose: The pursuer caught the evader when
dcheb(et, pt) ≤ 1, where et and pt are the evader’s and
pursuer’s position at t, respectively.

2) Win: The evader get to the goal cell without getting
caught, when dcheb(et, g) ≤ 1, where et is the evader’s
position and g is the goal cell.

3) Running: Otherwise the game is running, both the
evader and pursuer may choose to either move to any
valid cell, or stay in the currently occupied cell.

Fig. 4 llustrate an example of each game state. For all three
figures, the pursuer’s currently occupied cell is highlighted
with red, the evader’s cell with green, and the goal cell with
blue.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 4. Illustration of game state with different position for both agents. A
“lose” condition (left); “win” condition (middle); “running” contidion (right).

IV. RESULT AND ANALYSIS

A. Experiment Setup

To evaluate the effectiveness of our Risk-Aware D* Lite
algorithm, we conducted experiments on a 64 × 64 grid
environment. Each trial was initialized with:

• Randomly assigned elevation values Ci for each cell from
[1, 10].

• Randomly placed walls with Ci =∞.
• Evader and goal initialized at (0, 0) and (63, 63) respec-

tively.
• Pursuer initialized at (63, 0) to chase the evader.
Each experiment ran for up to 128 discrete time steps

or until termination. We tested the evader’s behavior under
multiple risk-penalty settings:

• λ = {0.00, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}
• r = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
The algorithms were implemented in Python with visualiza-

tion using Pygame. Each configuration was run over 4 different
map. The athor used the following metrics to see how the
algorithm performs under variable risk-penalty settings:

• Success Rate: Percentage of runs where the evader
reached the goal without being caught.

• Path Cost: Sum of all weighted steps taken by the evader.
• Computation Time: Average planning time per step (in

milliseconds).

B. Results and Interpretation

TABLE I
EVADER’S WIN RATE (%) FOR VARIOUS PENALTY AND RISK RADIUS

λ Risk Radius r
0 1 2 3 4 5 6 7 8 9 10

0.00 25 25 25 75 50 50 75 75 75 75 75
0.25 25 25 25 100 50 75 75 75 100 50 50
0.50 25 25 25 75 50 50 75 50 100 50 50
0.75 25 25 25 75 50 50 75 50 100 50 50
1.00 25 25 25 75 50 50 75 50 100 25 50
1.25 25 25 25 75 50 50 75 50 100 25 50
1.50 25 25 25 75 50 50 75 50 100 25 50
1.75 25 25 25 75 50 50 75 50 100 25 50
2.00 25 25 25 75 50 50 75 50 100 25 50

Fig. 5. Line chart of mean path cost over radius in various λ value.

From Table I, it is evident that the risk radius r shows a
far stronger influence on the evader’s success than the penalty
scaling factor λ. When r is very small (≤ 2), the win-rate
remains low (approximately 25%), regardless of the value of
λ, indicating that a narrow avoidance zone fails to divert the
pursuer. As r expands into the mid-range (3 ≤ r ≤ 7), the
evader’s success climbs sharply into the 50–75% band, demon-
strating that a broader repulsive field provides substantially
greater protection. The best success rate would be when r = 8,
where the evader almost always reach the goal (100% win
rate), with the exception when λ = 0 (i.e. normal D*-Lite).
Beyond this, at large radii (> 8), reached-rates fall to 50-75%,
and can plumbed to 25%, showing that further widening of the
avoidance zone do not guaranteed success.

In contrast, increasing λ beyond a modest threshold (around
0.5) produces only marginal improvements in win-rate, curves
for λ = 0.5, 1.0, and 2.0 are nearly indistinguishable. The
reason the penalty’s value λ does not affect the the success
rate may be because it was too late for the evader to flee
when the pursuer is near. Other reason proposed by the author
is that the the value’s range (0 ≤ λ ≤ 2) may not wide enough.
Further experiment may debunked this assumptions, but with
current set up, the conclusion is that the λ is not as impactful
as r. These observations suggest a clear tuning strategy: first
select a sufficiently large risk radius to secure the majority of
benefits, and then choose a moderate penalty factor to fine-tune
performance, since further increases in λ offer diminishing
returns.

From only Table I, a conclusion may be made that it is
better to increase r with low λ since it will guarantee the
best survival rate. However, as shown in Fig. 5, this comes
at a cost: path lengths increase due to wider detours. For
instance, with λ = 2.0 and r = 9, total path costs averages
to almost 120 weighted steps. As a saying “don’t miss the
forest for the trees”, the algorithm should not prioritize evading

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

TABLE II
MEAN PLANNING TIME (MILLISECONDS) FOR EACH PENALTY AND RISK RADIUS

Penalty Risk Radius r Mean Std Dev
λ 0 1 2 3 4 5 6 7 8 9 10

0.00 567 578 577 588 624 625 573 581 586 584 587 588 18
0.25 642 605 595 576 587 597 563 591 582 597 585 593 19
0.50 591 580 544 568 598 589 572 520 521 530 581 563 28
0.75 586 587 588 523 528 529 576 597 567 529 548 560 27
1.00 517 504 539 575 562 538 518 513 505 592 596 542 33
1.25 546 511 529 515 495 544 547 571 543 549 535 535 20
1.50 489 549 573 539 524 510 491 507 547 596 557 535 33
1.75 512 525 500 490 552 561 534 541 505 530 523 525 21
2.00 551 600 540 512 526 505 496 556 570 549 557 542 29

Mean 556 560 554 543 555 555 541 553 547 562 563 554
Std Dev 44 37 29 33 39 39 31 32 30 28 24 34

Fig. 6. The trace path of the evader (green) and pursuer (red) at r = 8,
λ = 1.25, and t = 79.

from pursuer over its main objective: get to the goal cell
with the shortest path possible. With this in mind, the author
propose that the best configuration for current environment
model would be r = 8 with any nonzero λ value. One of the
best demonstration of such configuration can be seen in Fig.
6 with λ = 1.25 and only requires 79 steps.

The finding from Table I would implies that the evader
get captured at large radii (r > 8). However, Fig. 5 may
argues that it is not the case. Recall at section IV-A that we
only run the simulation at 128 discrete steps. At r = 9 and
r = 10, the mean path cost skyrockets to around 110-120
weighted steps, implies that may be the simulation terminates
in “running” state where both agents still free to move. In
fact, that is what actually happens when the author tries to
run the simulation manually. After some time (t > 80), the
pursuer acts like a “goal-keeper”, preventing the evader to go
to the goal cell. Since the evader “repels” the pursuer while
the it is stand in its path, the resultant move would be a back-
and-forth dance between the both agents at distance r. Fig. 7
shows the trace path between both agents. This phenomenon

Fig. 7. The trace path between the evader (green) and pursuer (red) at r = 9,
λ = 1.75, and t = 131.

may happens because the “intercepting” behaviour we embed
in the pursuer’s AI back at section III-D utilize the similar
variable as the evader (R = r − 1), making it almost always
keep a stable distance between each other.

Table II shows that the computation time not differ much as
λ and r changes, with the average standard deviation only 34
milliseconds. For a Python code, the author argues that it is
still acceptable for offline simulation. However, optimizations
may still need to be done to decrease the computation time in
real-time planning. With around 500 milliseconds of compute
time per steps, a real-time dynamic path planning would be
extremely slow unless the algorithm is run sparsely. The author
suggest that optimization could be done by switching to a
compiled language like C++ or Java, reduce the number of
recomputing path, or changes the data structure used in the
algorithm. The current model uses a dictionary to store the
risk penalty functions, which could be replaced by a matrix
or 2D array to remove overhead time of hashing the key with
dictionary.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

C. Limitations and Future Work

Our model assumes both agent knows perfect knowledge
of the other’s location and moves with constant velocity. This
model is far from the actual condition in dynamic pursuit-
evasion scenarion where an agent may moves with different
speeds and have limited knowledge of the suroundings. The
quantitative result also did not incorporate a dynamic obstacle
condition due to limited resource to simulate the condition.
The author hopes that future work may incorporate uncertainty
models with limited knowledge, dynamic velocity settings,
and tests in dynamic obstacle environments. Additionally,
integrating machine learning to tune λ and r adaptively during
runtime remains an open direction.

V. CONCLUSION

This work introduced a Risk-Aware D* Lite algorithm,
which integrates a dynamically computed penalty into the
classic D* Lite framework to steer the evader away from a
moving pursuer. In a grid-world experiments modelled via
graph theory with 8-connected neighborhood with, the size
of the avoidance region is the primary determinant of success:
small radii yielded only 25 percent success, while radii of
three to seven cells increased success rates to over 75 percent,
a radius of eight cells achieved 100 percent win rate, and
increasing the radius more only reduces the rate. In contrast,
increasing the penalty scale beyond a moderate value offered
only marginal improvements, indicating insufficient parameter
space exploration due to range restriction. The evader secured
near-optimal performance with risk radius eight and penalty
scale between 0.5 and 1.5, balancing survivability against a
path-cost increase of less than 50 percent. Planning times
averaged around 500 milliseconds per step. It is suitable for
offline analysis but highlighting the need for optimization in
real-time applications.

Future research will explore the integration of uncertainty
in pursuer position estimates, the extension of this approach
to cluttered environments with dynamic obstacles and hetero-
geneous agent speeds, and the application of learning-based
techniques for adaptive parameter tuning. The author believe
Risk-Aware D* Lite offers a simple yet powerful enhancement
for evader planning in robotics, unmanned aerial systems, and
game AI.

APPENDIX

For further study, the author put a Python implementation
of the algorithm designed below. Feel free to check out this
repository and experiment more. To get more interactive ex-
planation, the author also provide a YouTube video explaining
the topics in Bahasa Indonesia in this link.

ACKNOWLEDGMENT

The author would like to express gratitude to Allah SWT
for His blessings and guidance in completing this paper.
Appreciation is also extended to Ir. Rinaldi, M.T., Lecturer
of IF1220 Discrete Mathematics, for his dedication and the
knowledge shared throughout the course. The author hopes

this paper may serve as a foundation for further development
beyond its initial submission.

REFERENCES

[1] N. Sharma, C. Dharmatti, and J. E. Siegel, “A Survey of Path Planning
Algorithms for Mobile Robots,” Vehicles, vol. 3, no. 3, pp. 448–468,
2021.

[2] S. Koenig and M. Likhachev, “Lifelong Planning A* and Dynamic D*
Lite: The proofs,” Int. J. Robotics Res., vol. 20, pp. 405-425, 2005.

[3] S. Koenig and M. Likhachev, “D* Lite,” in Proc. AAAI, 2002, pp. 476-
483.

[4] G. Primatesta et al., “A Risk-Aware Path Planning Strategy for UAVs in
Urban Environments,” J. Int. Robot. Syst., vol. 88, no. 4, pp. 627-643,
2018.

[5] R. Diestel, Graph Theory, 6th ed., vol. 173, Graduate Texts in Mathemat-
ics. Berlin, Heidelberg: Springer, 2025. doi: 10.1007/978-3-662-70107-
2.

[6] K. H. Rosen, Discrete Mathematics and Its Applications, 8th ed. New
York, NY, USA: McGraw-Hill, 2024.

[7] T. H.Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction
to Algorithms, 4th ed. Cambridge, MA, USA: MIT Press, Apr. 2022.

[8] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
4th ed. Boston, MA, USA: Pearson, 2020.

[9] A. Stentz, “The D* Algorithm for Real-Time Planning of Optimal
Traverses,” Tech. Rep. CMU-RI-TR-94-37, Robotics Institute, Carnegie
Mellon Univ., 1994.

STATEMENT

I hereby declare that the paper I wrote is my own writing, not
an adaptation or translation of someone else’s paper, and is
not plagiarized.

Bandung, June 23rd, 2025

Muhammad Akmal
13524099

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

https://github.com/m-akma1/IF1220_D_Star_Lite_Variant
https://github.com/m-akma1/IF1220_D_Star_Lite_Variant
https://youtu.be/Wv7n4m_8jVw

	Introduction
	Theoretical Basis
	Graph Theory and Terminology
	Graph Representation
	Grid Connectivity and Chebyshev Distance
	Path Planning Algorithm
	Breadth First Search
	Djikstra's Algorithm
	A* Search

	Incremental Search Algorithm
	LPA* Algorithm
	D* Algorithm
	D* Lite Algorithm

	Design of Algorithm
	Environment Model
	Evader's Initial Algorithm
	Evader's Variant Algorithm: Risk-Aware D* Lite
	Risk Penalty Function
	Weight Update Rule
	Algorithmic Procedure

	Pursuer's Algorithm
	Game State

	Result and Analysis
	Experiment Setup
	Results and Interpretation
	Limitations and Future Work

	Conclusion
	References

